Annual Drinking Water Quality Report

MARION

IL1990550

Annual Water Quality Report for the period of January 1 to December 31, 2022

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

The source of drinking water used by MARION is Purchased Surface Water

For more information regarding this report contact:

Clifford Hogue ;

Name

(618) 993-5533

Phone

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

ontaminants that may be present in source water notude:

include:

Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

 Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

serious health problems, especially for pregnant women and young children. Drinking Water Hotline or at drinking or cooking. If you are concerned about sitting for several hours, you can minimize the We cannot control the variety of materials used associated with service lines and home plumbing. is primarily from materials and components If present, elevated levels of lead can cause water tested. Information on lead in drinking potential for lead exposure by flushing your tap plumbing components. When your water has been ninimize exposure is available from the Safe ead in your water, you may wish to have your or 30 seconds to 2 minutes before using water ttp://www.epa.gov/safewater/lead testing methods, and steps you can take to Lead in drinking water for ij

Source Water Assessment

We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by City Hall or call our water operator at (618) 903-5533. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water, Susceptibility to Contamination Determination, and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl.

Source of Water: REND LAKE INTER-CITY WATER SYSTEMIllinois EPA considers all surface water sources of public water supply to susceptible to potential pollution problems. Hence the reason for mandatory treatment of all public water supplies in Illinois. Mandatory treatment includes coagulation, sedimentation, filtration and disinfection. Primary sources of pollution in Illinois lakes can include agricultural runoff, land disposal (septic systems) and shoreline erosion.

Lead and Copper

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin

0 f

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow

Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.	z	mdđ	0	0.046	1.3	1.3	09/17/2020	Copper
Likely Source of Contamination	Violation	Units	# Sites Over AL	90th Percentile	Action Level (AL)	MCLG	Date Sampled	Lead and Copper

Water Quality Test Results

Definitions: The following tables contain scientific terms and measures, some of which may require explanation.

Regulatory compliance with some MCLs are based on running annual average of monthly samples

A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why

total coliform bacteria have been found in our water system.

A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

using the best available treatment technology. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible

Maximum Contaminant Level or MCL:

Level 2 Assessment:

Level 1 Assessment:

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCIGs allow for a margin of safety.

Maximum residual disinfectant level or disinfectant is necessary for control of microbial contaminants. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of

Maximum residual disinfectant level The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

not applicable.

goal or MRDLG:

mrem:

millirems per year (a measure of radiation absorbed by the body)

per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

: mdd : ddd

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

Disinfectants and Disinfection By- Products Chloramines	Collection Date 12/31/2022	Highest Level Detected	Highest Level Range of Levels Detected Detected 3 3 - 3	MCLG MRDLG = 4	MCL MRDL = 4	Units	Violation N	Violation Likely Source of Contamination N Water additive used to control microbes
Chloramines	12/31/2022	3	ა ა	MRDIG = 4	MRDL = 4	ppm	N	Water additive used to contr
Haloacetic Acids (HAA5)	2022	20	10.4 - 27.3	No goal for the total	60	qđđ	Z	By-product of drinking water disinfection
Total Trihalomethanes (TTHM)	2022	36	18.4 - 52	No goal for the total	80	ppb	N	By-product of drinking water disinfection

2022 Regulated Contaminants Detected Lead and Copper Date Sampled: 11/15/19

Definitions: Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALG's allow for a margin of

0	Lead MCLG
15 ppb	Lead Action Level (AL)
0 ppb	Lead 90th Percentile
0	# Sites Over Lead AL
1.3 ppm	Copper
1.3 ppm	Copper Action Level (AL)
0	Copper 90th Percentile
0	# Sites Over Copper AL
Corrosion of household plumbing systems; Erosion of natural deposits	Likely Source of Contamination

Water Quality Test Results

water. ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water. N/A: not applicable. Avg.: Regulatory compliance with some MCL's is based on running annual average of monthly samples. Maximum Residual Disinfectant Level (MRDL): The highest level of disinfectant best available treatment technology. Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no The highest level of a contaminant that is allowed in drinking water. MCL's are set as close to the Maximum Contaminant Level Goal as feasible using the Definitions: The following tables contain scientific terms and measures, some of which may require explanation. Maximum Contaminant Level (MCL): known or expected risk to health. MCLG's allow for a margin of safety. **ppm**: milligrams per liter or parts per million - or one ounce in 7,350 gallons of allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum MRDLG's do not reflect the benefits of the use of disinfectants to control microbial contaminants. pCi/L: Picocuries per Liter (a measure of radioactivity) Residual Disinfectant Level Goal (MRDLG): The level of disinfectant in drinking water below which there is no known or expected risk to health.

Regulated Contaminants

Arsenic	Barium	Inorganic Contaminants	Chloramines	Chlorite	*TTHMs [Total Trihalomethanes]	*Total Haloacetic Acids (HAA5)	*Not all sample results may	Disinfectants & Disinfection By- Products
2022	2022	Collection Date	12/31/22	2022	2022	2022	have been	Collection Date
1	0.0129	Highest Level Detected	3.1	0.5	35	21	used for calcul where	Highest Level Detected
0.98 - 0.98	0.129 - 0.129	Range of Levels Detected	2.82 - 3.13	0.024 - 0.5	24.9 - 49.3	16.7 - 26.8	calculating the Highest level detected because some rewhere compliance sampling should occur in the future.	Highest Level Range of Levels Detected Detected
0	٧ ,	MCLG	MRDLG=4 MRDL=4 ppm	0.8	N/A	N/A	st level deta mpling shou	MCLG
01	2	MCL	MRDL=4	1	80	60	ected beca Ild occur i	MCL
ррь	ppm	Units	ppm	ppm	ppb	ppb	ause s in the	Units
No	No	Units Violation	No	No	No	No	ome resuli future.	Units Violation
Erosion of natural deposits; Runoff from orchards; Runoff from electronics production wastes	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits	Likely Source Of Contaminant	Water additive used to control microbes	By-product of drinking water chlorination	By-product of drinking water chlorination	By-product of drinking water chlorination	*Not all sample results may have been used for calculating the Highest level detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future.	Likely Source Of Contaminant

	Commence of the Commence of th		
Sodium	Nitrate (measured as Nitrogen)	Fluoride	Inorganic Contaminants (continued)
2022	2022	2022	Collection Date
24	0.17	0.7	Highest Level Detected
24 - 24	0.17 - 0.17	0.65 - 0.65	Highest Level Range of Levels Detected Detected
	10	4	MCLG
	10	4	MCL
ppm	ppm	ppm	Units
No	No	No	Units Violation
Erosion from naturally occurring deposits. Used in water softener regeneration	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits	Erosion of natural deposits; Water additive which promotes strong teeth; Fertilizer or Aluminum Factory discharge	Likely Source Of Contaminant

The state requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though accurate, is more than one year old.

	Carried Market Company	CANADA CA			J:	mant of the along	hiditaria a manana	Timbidity Information Chatemant, Timbidity is a manufacture of the classic of the control of the
Erosion of naturally occurring deposits	No	15 pCi/L	15	0	0.12 - 0.12	0.12	1/22/2020	Gross alpha excluding radon and uranium
Erosion of naturally occurring deposits	No	5 pCi/L	5	0	0.86 - 0.86	0.86	1/22/2020	Combined Radium 226/228
Likely Source Of Contaminant	CLG MCL Units Violation	Units	MCL	MCLG	Range of Levels Detected	Highest Level Detected	Collection Date	Radioactive Contaminants

Turbidity Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Definitions: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. NTU – Nephelometric Turbidity Units

Total Organic Carbon The percent	0.3	Highest Single Measurement	100%	Lowest Monthly % meeting limit
Total Organic Carbon The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal	1 NTU	Limit (Treatment Technique)	0.3 NTU	it Limit (Treatment Technique)
ared each month and	No	Violation	No	Violation
the system met all TOC removal	Soil Runoff	Source	Soil Runoff	Source

requirements set, unless a TOC violation is noted in the violation sections.

VIOLATIONS: There were no violations this reporting period.

* These tables are from the Rendlake Inter-City water system.